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Collaborative authorship in science is the overwhelming norm, and articles with 
tens or even hundreds of listed authors are not uncommon. Across philosophy, 
there has been an increasing recognition that collaborative research and 
collaborative knowledge production are central epistemological practices and not 
just fringe phenomena. The philosophical literature on collective actions and 
intentions, collaborative knowledge, and group minds is exploding (Gilbert 1989, 
1996; Huebner 2013; List & Pettit 2011; Rolin 2008; Thagard 2002; Tuomela 
2002; Wray 2002, 2006). In spite of this focus on collective and collaborative 
phenomena, we think that questions about collaborative authorship raise distinct 
philosophical issues that have yet to received sufficient attention; sometimes 
these have been improperly assimilated to issues concerning collaborative 
knowledge and action. In this paper, we examine the unique difficulties inherent 
in establishing authorship in the context of collaborative research.  

Collaborative research can be organized in a variety of different ways, and it 
can be performed in different material contexts. Not everyone involved in a 
research project is an author; indeed, we argue that people are sometimes listed 
as ‘authors’ on a publication when they should not be properly understood as 
authors at all. We examine three broad classes of research architectures using 
case studies. We consider collaborative research with multiple authors, 
collaborative research with a single author and many collaborators, and ‘radically 
collaborative’ research that is distributed widely over time and space, involves 
researchers from multiple disciplines, and typically results in publications with 
dozens of listed authors. (cf. Kukla 2012; Winsberg 2012; Winsberg, Huebner, & 
Kukla 2014). We hold that the first two types of collaborative research leave our 
basic understanding of authorship untouched. But we argue that an important 
range of research questions require radical collaborations that seriously 
challenge our understanding of and standards for authorship.  

Authoring is not the same as knowing, though it cannot be understood 
independent of its relationship to the epistemic activities responsible for 
producing knowledge. Although knowing is not an inherently social or 
communicative notion, authorship is by nature social and communicative, even 
where it is not collaborative. Unlike mere knowers, (nonfiction) authors are 
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accountable for the content and accuracy of the information they produce. An 
author must be able to justify and vouch for the truth of her claims, defend her 
products when challenged, and retract her claims when she cannot defend them 
in light of criticisms or new information. An author might make false claims, at 
least so long as she remains accountable and takes proper responsibility for 
them. Inquiries that are backed up by faulty processes of knowledge production 
and acquisition yield authors that are less reliable sources of information. But 
such failings are not failures in the status of authorship. Failing to know is not the 
same as failing to author. 

There are currently no good strategies for understanding or ensuring 
accountable authorship in the context of radical collaborative research. We argue 
that neither the multiple-author nor the single-author model of accountability is 
viable in these cases. So, if the results that are reported by such collaborations 
are to be authored at all, they must be group authored. But we contend that a 
great deal of radically collaborative research has structural features that make 
group authorship impossible, thus making authorship simpliciter impossible in 
these cases. Even where there are good faith attempts to produce group 
authorship, major architectural barriers remain. This, we claim, poses concerns 
about epistemic security as well as our ability to interpret and decide when to 
trust the results that are reported in radically collaborative publications.  
 
1. Catch and toss authorship and centralized control authorship 
 
We begin by looking briefly at two kinds of collaborative research that do not 
pose a fundamental challenge to a traditional notion of authorship. First, we 
consider a type of collaborative research where a few authors work together to 
produce a single co-authored paper--much as we have done with this one. 
Borrowing a term from Andy Clark (1998, 105-6), we call this ‘catch and toss’ 
authorship. Second, we examine a kind of collective research that relies on a 
widely distributed form of information processing, but which retains a high degree 
of centralized control over the reported results. We use the first type of case to 
demonstrate a way in which research can be deeply social without compromising 
authorship; we use the second type of case to demonstrate a critical respect in 
which the distribution of information processing does not entail the distribution of 
authorship. With these cases in hand, we turn in the following section to a 
discussion of the kinds of radical collaboration that put more significant pressures 
on our ordinary understanding of authorship. 

Let’s begin with the kind of case most familiar to philosophers. When 
philosophers collaborate, they typically exchange ideas in a way that allows each 
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author to retain epistemic authority over the resulting paper. In the most familiar 
form of philosophical collaboration, one author develops an idea (either in 
discussion, or as she writes her section of a paper). She then ‘tosses’ it to 
another author who ‘catches’ it, revises or extends it, and then tosses it back. 
This type of collaborative writing often consists in a long series of such ‘catchings’ 
and ‘tossings’, and the process is typically repeated until every member of the 
collaboration is happy to put her name on the resulting paper. These types of 
collaborations allow every author to be accountable for her own contributions. 
But, more importantly, since the writing and thinking are genuinely interactive, 
each author is likely to form a relatively clear sense of the structure of the overall 
argument. While there may remain some minor disagreements regarding what 
ought to be said, each author remains in position to vouch for the finished 
product. Each author is typically in a position to defend the claims that are 
produced through the collaboration when they are challenged, and each author is 
in a position to retract the claims that cannot be defended in light of criticism.  

Of course, things are not generally this simple, and there is a different of 
‘catch and toss’ process that arises when a project requires a unique technical 
skill or information that is only available to a specialist. In some cases complex 
statistical analyses are required that a lead author does not know how to carry 
out; in other cases, the relevant research may require a working knowledge of 
some range of scientific data that is only available to a person who has 
undergone special training. But, in these cases, a single author can do the work 
that is relevant to a particular section of a paper in a way that allows her to retain 
responsibility for her portion of the paper. For example, one author may ‘catch’ a 
data set collected by someone else, carry out a complicated statistical analyses, 
and ‘toss’ these results back to the lead author who inserts them into the paper.1  

																																																								
1  Although ‘catch and toss’ collaborations fall reasonably comfortably within our traditional 

understandings of authorship, they can still create epistemic complications. When people come to a 
project with complementary forms of knowledge and expertise, which are drawn from different 
fields of inquiry, they must somehow find a way to negotiate the details of a collaboratively 
authored project. Precisely how this occurs differs from collaboration to collaboration. At one 
extreme, there are collaborations in which multiple revisions of a project are carried out, with an 
emerging paper being tossed back and forth until every collaborator understands and agrees to 
every one of the claims that are made. This yields a situation where every author fully understands 
the target phenomena, and can thereby be seen as an author in the traditional sense of the term. 
At the other extreme, there are collaborations in which every author simply accepts the claims that 
are made by collaborators, developing no further understanding of the target phenomena beyond 
their original field of expertise. This yields a situation where authorship is distributed across the 
members of a group, but where it is possible to recover structures of accountability by tracking the 
patterns of trust and acceptance within the group. As Hanne Andersen & Susann Wagenknecht 
(2013, 1892) note, collaborative scientific practice typically lies somewhere between these 
extremes. Even in small-scale collaborations "scientists in some areas learn from each other and in 
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Clear lines of responsibility are maintained in this type of co-authorship, and 
where the corresponding author is unable to vouch for a claims that is made in 
the paper she will know which collaborator has this capacity. This means that it is 
possible for collaborations to include specialists while still making sure that there 
is someone who is epistemically accountable.  

In both of these cases, ‘catch and toss’ collaborations help to organize 
information in a way that functionally distributes the labor required for producing 
some purported piece of knowledge. The ideas produced through ‘catch and toss’ 
collaborations are often only possible because of the patterns of reciprocal 
feedback that arise between collaborators. However, each part of the co-
authored paper is the product of an individual author who produces 
representations that can be ‘tossed’ back and forth. This yields a sort of joint 
authorship in which claims to knowledge are produced through a highly 
interactive process that leaves standard structures of accountability and 
responsibility in place.  

But there are types of research, and accompanying forms of collaboration, that 
are too complex for this ‘catch and toss’ model to be practically possible. For 
instance, after the French Revolution, the Académie des Sciences famously 
instituted a metric system of weights and measures. They also stipulated that 
right angles would now be divided into 100 grades rather than 90 degrees.2 
Nautical navigation relied heavily on trigonometric tables, and using this new 
standard of measurement on the fly proved practically impossible. So, the 
Académie instituted the Bureau du Cadastre to construct new trigonometric 
tables using grades rather than degrees. The director of the Bureau, Gaspard de 
Prony, was enamored of Adam Smith’s idea of ‘distributing labor’, and he hired a 
team of human computers to carry out the arduous task of constructing the 
trigonometric tables. The vast majority of these computers (around 90 of them) 
“were former servants and hairdressers, who had lost their jobs when the 
Revolution rendered the elegant styles of Louis XVI unfashionable or even 
treasonous” (Grier 2005, 36). As such, they had no mathematical training beyond 
the basic abilities required to add and subtract. So, a team of eight ‘planners’ 
supplied these computers with worksheets that allowed them to carry out simple 
calculations; the planners then took differences between the calculated values to 
spot-check for errors. Finally, a small number of trained scientists figured out the 
appropriate formulas to be passed down to the planners. All of the relevant 

																																																																																																																																																							
others remain epistemically dependent." So, the social epistemology of even small-scale ‘catch and 
toss’ collaborations can be more vexed than we have suggested here. 

2 Our discussion of De Prony in this paragraph follows Grier (2005, 34-38). For an interesting 
discussion of this research in another context, see Shieber (forthcoming). 
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calculations were eventually passed along to de Prony, who put together a 
nineteen-volume manuscript that included all of the tables.3  

Structurally speaking, this kind of research shares much with the ‘catch and 
toss’ collaborations discussed above. However, in this case, the human 
computers became nothing more than sources of information for de Prony’s 
mathematical investigations. The organization and distribution of intellectual labor 
instituted clear lines of responsibility, such that de Prony (and perhaps his team 
of trained scientists) retained accountability for the resulting tables. The human 
computers became mere tools, to be used in the service of a project carried out 
by a few highly trained and highly intelligent scientists. Because of the 
organization of this research, de Prony (and perhaps the trained scientists) 
remained epistemically accountable. These authors could vouch for the results of 
this massive collaboration; they were the ones who were epistemically 
accountable for producing accurate tables, defending them if challenged, and 
revising them if necessary. The relevant structures of epistemic responsibility and 
accountability were maintained in the Bureau du Cadastre to allow for the 
distribution of collective research while leaving traditional notions of authorship 
intact. In effect, the text was still single-authored, even in the face of distributed 
information processing, because one person retained centralized control over the 
research process, including its methodological standards and implementation. 
While many people participated in the production of knowledge, only one person 
had the status of the author of the document communicating that knowledge.4 
 
2. Genuinely distributed epistemic labor 
 
In the type of case we just examined, labor is distributed, but there is no need for 
lower-level agents to exercise special epistemic skills or judgment, because the 
author who retains centralized control can provide lower-level agents with 
detailed and specific instructions about how to handle every problem that they 
might encounter. We now turn to a set of cases involving distributed epistemic 
labor, in which the primary reason for involving a large number of actors is that 
no single actor can possesses the relevant knowledge and skills that are 
necessary to produce and sanction the desired knowledge claims. In such cases, 
multiple actors must exercise special epistemic skills and judgment. In the types 

																																																								
3 Unfortunately, the manuscript was never published because the publisher went bankrupt, and the 

Napoleonic government had no interest in publishing the volume. 
4 Strikingly, a similar model of highly distributed, centrally controlled research was instituted at the 

Oak Ridge National Laboratory as a way of isolating isotopes of Uranium-235. For a detailed 
discussion of this case see Winsberg, Huebner, & Kukla (forthcoming). 
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of collaborations that interest us here, there is no one who understands the role 
that is played by every researcher, and there is no one who knows what 
everyone else has contributed to the project; there is no one who has even 
testimonial knowledge that the other researchers are trustworthy; there is no one 
who has command over how the various pieces of the study fit into a coherent 
whole.  

We argue that the reports that result from these types of radical 
collaborations cannot be understood as multiply authored, as in the catch and 
toss model, or single-authored while involving distributed labor, as in the 
centralized control model. Instead, if they have any kind of author at all, it must 
be a group author. Unfortunately, as we will see, the architecture of radically 
collaborative research is not typically of the right sort to produce a group author. 
Nor is it at all clear, given the real pressures and constraints that such research 
faces, how it could be restructured so as to enable group authorship.  
 
2.1 Modeling in Climate Science 
      
No case exemplifies radically distributed epistemic agency better than climate 
science—especially when it involves massive, modular, and highly complex 
coupled atmosphere-ocean global climate model (AOGCM) simulations, such as 
the National Oceanic and Atmospheric Administration’s GFDL CM2.x Model.5 
CM2.x contains over a million lines of code, with over a thousand different 
parameter options. Its novel component modules were written by over one 
hundred people. These modules are constantly changing and they involve 
hundreds of initialization files that contain incomplete documentation. Loading 
input data into a simulation run takes over two hours. It takes weeks to produce a 
model run out to the year 2100, using more than one hundred processors 
running in parallel; and it takes months for them to reproduce thousands of years 
of paleoclimate data. If you store the data from a state-of-the-art GCM every five 
minutes, it produces tens of terabytes of data per model year. But these data 
must be collected relatively quickly to be of any use. Policy makers want 
immediate answers to near-term possible climate changes, and we would like to 
know what characteristics the climate is likely to have in 2050 sometime before 
2050. This is part of the reason why these climate models must reflect the work 
of hundreds of researchers working at different times and in different physical 
locations. Furthermore, the time-indexed nature of the research makes it 
inherently unreproducable. 

																																																								
5 Details concerning the CM2.x model come from (Dunne 2006). 
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The sheer size and complexity of such models make it clear why their 
construction and sanctioning must involve a vast army of specialists. Their 
production and use requires expertise in climatology, meteorology, atmospheric 
dynamics, atmospheric physics, atmospheric chemistry, solar physics, historical 
climatology, geophysics, geochemistry, geology, soil science, oceanography, 
glaciology, paleoclimatology, ecology, biogeography, biochemistry, computer 
science, mathematical and numerical modeling, statistics, time series analysis, 
and more. Furthermore, no GCM is built from the ground up in one short 
surveyable unit of time. They all rely on assemblages of methods, modules, 
parameterization schemes, initial data packages, bits of code, coupling schemes, 
and so forth that have been built, tested, evaluated, and credentialed over years 
or even decades of work by climate scientists, mathematicians, and computer 
scientists of all stripes.6 This yields a sort of “fuzzy modularity” in these models 
(Lenhard & Winsberg 2010). In current atmospheric GCMs, we find a deliberately 
modular architecture that consists of coupled models, which are themselves 
comprised of numerous interactive submodels (e.g., modules for general 
circulation of the atmosphere, cloud formation, dynamics of sea and land ice, and 
effects of vegetation). The interactions between these models determine the 
global dynamics in simulation runs, and interactions can be quite complex.7 In a 
modular system, individual models (ideally!) act as interchangeable but highly 
networked modules. The results of such modules can first be gathered 
independently and then synthesized. However, in current GCMs, the data is 
continuously exchanged between modules during the runtime of the simulation.8 
Thus the dynamics of the model can only be understood as the complex result of 
the interaction between these modules, each of which is infused with the 
judgments made by numerous different scientists, on the basis of their own 
assumptions about what the right way to parameterize is. To say that such 
models have only a sort of fuzzy modularity is to note that the interactivity and 

																																																								
6 There has been a move, in recent years, to eliminate “legacy code” from climate models. Even 

though this may have been achieved in some models (this claim is sometimes made about CM2), it 
is worth noting that there is a large difference between coding a model from scratch and building it 
from scratch, that is, devising and sanctioning from scratch all of the elements of a model 

7 To take one example, the coupling of atmospheric and oceanic circulation models is recognized as 
a milestone of climate modeling. Both components had an independent modeling history, including 
independent calibrations of their respective performance. Putting them together was a difficult task 
because the two submodels interfered dynamically with one another. For an account of the 
controversies surrounding early coupling, see Shackley et al. (1999); for a brief history of modeling 
advances, see Weart (2010). 

8 Because data are being continuously exchanged one can accurately describe the models as 
parallel rather than serial in the sense discussed in Winsberg (2006). 
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the balancing of approximations prevents the system from being broken down 
into separately manageable pieces.  

The problems for authorship that are evoked by this type of fuzzy modularity 
are exacerbated by the fact that epistemically salient decisions in climate 
modeling must be sensitive to a continuous, dynamic flow of information through 
the model. The collaborators must carry out continuous deliberative adjustments 
in light of new circumstances and new information, and this must frequently occur 
without the time or means to consult with other members of the research team. 
This is why the operation of each module must rely on a mixture of principled 
science and decisions about parameterization. Climate modeling involves literally 
thousands of methodological choices. Many crucial processes are poorly 
understood; many compromises must be made in the name of computational 
exigency; and so forth.  

But no methodological choice can be defended in a value vacuum. When one 
asks, “Why parameterize this process rather than try to resolve it on the grid?” or 
“Why use this method for modeling cloud formation?” the answer is rarely 
“because that choice is simply objectively better than the alternatives.” Most of 
these choices are better in some respects and worse in others, and the 
preference for the one choice over its alternatives always reflects the judgment 
that this or that respect is more important. Some choices will result in more 
accurate predictions with respect to one variable (e.g. tropical precipitation), 
while its alternative will be more accurate with respect to another (e.g. polar ice). 
Some choices will increase the probability of finding a certain degree of climate 
variation; other will do the opposite. So any rational reconstruction of the history 
of climate science (if it existed) would have to mention each of these predictive 
preferences at pain of making most choices seem completely arbitrary (Biddle & 
Winsberg 2009, Lenhard & Winsberg 2010, Winsberg 2010). 

Meanwhile, climate experts, in light of the individually limited role that they 
play in the socially extended activity of building climate knowledge, can only 
arrive opinions about the future of the climate in ways that are fundamentally 
mediated by the complex models that they build. And they are incapable of 
sorting out the ways in which past methodological choices made by other 
scientists--scientists whose expertise they don’t entirely share--are influencing, 
through their entrenchment in the very models that mediate their inferences, the 
conclusions that they deliver to policymakers.  

No single person is a position to offer a rational reconstruction of a climate 
model. Too many of the methodological choices are buried in the historical past 
under the complexity, distribution, and historically path-dependent character of 
climate models. The various local standards and values employed in climate 
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science lie in the nooks and crannies (Winsberg 2012). They might very well 
have been opaque to the actors who put them there, and they are certainly 
opaque to those who stand at the end of the long, distributed, and path-
dependent process of model construction. There is no one who could, even in 
principle, be held accountable for the claims to knowledge that are produced 
using CM2.x. To put the point another way, there is no person who has the 
requisite expertise to play the role of de Prony in these modeling activities, and 
accordingly there is no single person who can legitimately be treated as the 
author of these claims.9  
 
2.2 Multisite Clinical Trials in Biomedical Research 
 
Multisite clinical trials, the purported gold standard of biomedical research, create 
an analogous pattern of difficulties. In many cases, biomedical research takes 
the form of geographically distributed projects that involve many teams of 
researchers, each of which uses nurses, lab techs, students, departmental 
administrators and many others to help implement the study and keep track of 
data. Papers with dozens of authors, often from several continents, are the norm. 
In many cases, no one has the expertise and training to design and implement 
every part of the study. Such research often draws on a wide variety of 
disciplinary expertise, including biostatistics, cell biology, oncology, and 
immunology, among many others.10 These research projects are so dispersed 

																																																								
9 Contrast this with even a very complex example of ‘catch and toss’ authorship: Timothy Gowers 

and Michael Nielsen (2009) report the results of a recent case collaborative research in 
mathematics known as the Polymath Project. The aim of the project was to find an elementary 
proof of the Hales-Jewett theorem. Over the course of 37 days, 27 mathematicians contributed 
approximately 800 substantive comments to a collaborative discussion, yielding 170,000 words of 
text, and an elementary proof of the Hales-Jewett theorem. Contributions to the proof were made 
by world-renowned mathematicians and university professors, as well as high school math 
teachers. Furthermore, contributors were active in the discussion to very different degrees, and at 
different points over the course of the collaboration. This case provides a nice set of insights into 
the operation of ‘catch and toss’ collaborations. The discussion reveals that ideas are often 
proposed, then adjusted, and sometimes discarded over the course of the collaboration. But 
perhaps more importantly it reveals that advances in understanding often result through the 
“aggregation and refinement of many smaller insights” (Gowers & Nielsen 2009, 880). This process 
generates practical questions about authorship. For example, how should credit be assigned when 
a contributor offers a single insightful contribution, and how should it be assigned when a 
contributor is prolific, but not particularly insightful? But a working record of the collaboration 
remains available for outside scrutiny. If there were a mistake in the proof, it could be tracked down, 
and it could be determined how mistakes were introduced, and how they were perpetuated in the 
project. This may not be an easy task, but at least it would be possible.  

10 The December 2011 issue of the New England Journal of Medicine includes five “original research” 
articles, with 27, 6, 29, 19, and 13 authors respectively. All but one of them is written on behalf of a 
much larger research group, and links to a supplementary appendix listing hundreds more 
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and so multidisciplinary that no one can have access to more than a small corner 
of these data. Furthermore, no one can have expertise in all of the on-the ground 
skills required to administer tests, read results, recruit subjects, etc. It is unlikely 
that the biostatisticians and immunologists fully understand each other's 
contributions, or that researchers in France know exactly how subjects were 
recruited in Taiwan, and so on. This is decentralized, distributed collaborative 
research on a massive scale – a scale frankly unthinkable until recent 
developments in communication technology. 

The problem is not merely that there is no person or small group of people 
that could have the time or the expertise to run the study on their own. The data 
in biomedical research, as in climate science, are often time and place 
dependent, and questions about clinical effects are often context-specific. 
Policymakers frequently need to know immediately whether to close schools in 
response to potential epidemics, and there are sometimes political pressures to 
approve a drug or remove it from the market as soon as possible. Because 
medical interventions often work differently in different populations living under 
different social and material conditions, it common for a research question in 
biomedicine to require trials in far-flung locations, which must be conducted 
under messy and chaotic conditions, in the face of communication challenges. 
Additionally, since bodies change quickly, and since harms and benefits from a 
treatment often evolve over time, the time frame of a study (how quickly it must 
be completed, how close together in time the collection of different data sets 
must be) is often fixed by the research question. In other words the multi-site 
distribution of studies along with their rapid time frame is often essential to the 
research design. This, again, makes these studies inherently unreproducible. 

Unlike centralized control cases, researchers involved in this sort of radically 
collaborative, distributed research must often make methodological adjustments 
on the fly in response to noncompliant research participants, unforeseen barriers 
to implementation and communication, surprising side effects, and so forth. It is 
hard to know in advance what methodological uncertainties, judgment calls and 
choice points collaborators will face. These adjustments may be made differently 
at different sites, and in different ways at different stages of the research process. 
Whereas De Prony’s computers repeated the same task under controlled 
conditions, these researchers must draw on their own expertise to make on-the-
spot decisions about how to proceed under imperfect and sometimes surprising 
conditions. For example, when researchers encounter participants who are 

																																																																																																																																																							
collaborators and participating investigators. All five articles list authors from various countries and 
various institutions within each country, and each contains authors with diverse disciplinary 
backgrounds. Other issues display roughly similar authorship patterns. 
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partially compliant, who disappear half way through a study, who display 
ambiguous symptoms, who are difficult to communicate with, and so on, they 
must still decide whether to use data from these participants or not. But this 
requires judgment calls about how much to bend protocol to get through the 
study.  

For all these reasons, there is often no one involved in the research who has 
more than a loose idea who is doing what parts of the sprawling project, using 
what methods, or how accurately. Whatever being an ‘author’ comes to in the 
context of climate science or multisite clinical trials, it shares little with the 
traditional understanding of scientific authorship. Indeed, actual practices of 
assigning authorship make no pretense that authorship tracks responsibility for 
the production or the justification of the results. There is no presumption that the 
actual writing of the article, which many scientists see as extra-scientific 
busywork, will be performed or even overseen by the lead ‘authors’. Authorship 
constitutes an institutional status; it does not represent a specific form of 
epistemic labor. Authorship is assigned and ordered according to whose grant 
money was used, who runs the lab, who has tenure, who needs a job, and so 
forth.  

Often this reality is stubbornly denied by the researchers themselves.  For 
instance, the many authors of “Boceprevir for untreated chronic HCV – A 
Randomized Clinical Trial” try to foreclose these worries by insisting that they 
have attained a more traditional authorial status. Their article states, “Each 
author vouches for the fidelity of the trial conduct to the protocol and the 
completeness and accuracy of the results and data analyses” (Poordad et al 
2011). Unfortunately this is radically implausible, if taken as an epistemic claim. 
The article has 15 authors in four countries employed by 11 academic institutions 
plus Merck. It is presented on behalf of the SPRINT-2 investigators. The 68 page 
appendix lists 173 principle investigators from 11 countries who participated in 
the study, each of whom presumably relied in turn upon a wide variety of support 
staff to actually implement the study, keep track of the data, and communicate 
with other participants and with Merck. With the number of people playing some 
role in the path from study design to implementation to publication running in the 
hundreds or even thousands, the idea that each of the 15 authors could know 
that everyone involved was competent and reliable, that they adhered to the 
protocol in the same way, that the data set was complete and accurate, etc. is 
absurd. In radical, distributed biomedical collaborations, testimonial knowledge 
securing each part of the study is impractical.  
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3. Neither catch and toss nor centralized control 
 
A prima facie response to our argument so far is to admit that radically 
collaborative science articles, as currently produced, have no author, but also to 
insist that scientific practice could be reorganized so as to bring it under the 
catch-and-toss or the centralized-control models. In that case, climate science, 
biomedical research, and similar massively collaborative, distributed, 
interdisciplinary sciences would differ from our original examples only in size and 
not in deep epistemic structure. We contend, however, that material constraints 
on this kind of research and the complex normative pressures it is under make it 
hard to see how to reorganize it in these ways. There are multiple barriers to the 
effective production of authorship in climate science and biomedical science that 
are not so easily overcome. 

Consider first the attempt to assimilate authorship in radically collaborative 
science to catch-and-toss authorship. Even if there is no one person who can 
recreate a study, or even understand all its parts, it is not obvious why this is 
different from relying on a friend to run your statistics. One response to these 
worries might be to suggest that we reform the organization of radically 
collaborative science so as to allow transparency and coordination of 
methodological choices and standards. We need to ensure that information about 
the pressures that shape various parts of the study is readily available, on this 
line. Furthermore, we need mechanisms that guarantee that each author can 
have confidence in the competence and honesty of each other author. If we do 
this, we could, the argument goes, turn radically collaborative research into a 
huge catch-and-toss project. All of the authors could take responsibility for the 
whole study, because they have testimony-based confidence in all its parts and 
could hold their co-authors accountable for their interest-driven choices if needed. 
They understand what each of their collaborators contributed, know that each of 
their collaborators is competent and trustworthy with respect to her part of the 
whole, and can explain how those parts fit together. Legitimate collaborations 
would then have an embarrassment of riches: multiple authors, not just one 
author or no author at all. 

In the catch-and-toss model, research can have multiple authors because 
they understand each part of the project and understand how they fit together, or 
because they understand why each researcher is trustworthy and accountable 
when it comes to her own part of the whole. But this requires the ability to know 
how all of the pieces of the research fit together into a coherent whole. This is not 
possible in the radical collaborations like those we discussed above. No 
researcher can vouch for the totality of the decentralized, spatially and temporally 
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distributed epistemic labor. Radical collaborations draw on different kinds of 
expertise, and respond to different kinds of pressures that arise as a result of 
local context. There is no way for a climate scientist working with CM2.x to know 
the role of every action, value, and decision that went into building the model; 
there is no way for any individual to personally vouch for the fact that every 
contributor was competent and reliable in making his choices. Perhaps more 
importantly, even assuming the competence of everyone involved, there is no 
one who can know that those choices cohere with the methodological choices 
made by others who played a role in producing this model. Some of the history of 
CM2.x reaches back decades, and involved people and situations that our 
hypothetical single climate scientist has never even heard of. 

The reasons why radically collaborative research can’t be brought under the 
centralized control model are perhaps more interesting. Whereas de Prony relied 
on widely distributed epistemic labor, he was in charge of designing and 
implementing the project. He established the methodology of the study, relying 
on information processing that was largely mechanical and that yielded clear 
data that just needed to be assembled at the end of the production line. De 
Prony’s computers did not need specialized epistemic skills, nor did they need to 
make their own methodological choices or establish their own epistemic 
standards; they simply executed the relevant functions. De Prony did not need to 
trust the expertise of his computers because they were not called upon to 
exercise any.  

In other words, De Prony faced an engineering problem rather than an 
epistemic problem. As long as there were structural mechanisms in place to 
guarantee that his computers executed their function sufficiently reliably, and as 
long as he could count on relatively reliable information flow from the margins 
back to the center, his reliance on others to carry out the epistemic labor was not 
interestingly different from relying on any kind of data-collecting or data-storing 
instrument. De Prony was the only one who was establishing methodological 
practices and epistemic standards, and he was accountable for the justifiability of 
the methods and the accuracy of his results (including his method for ensuring 
the reliability of his ‘tools’). This is the primary reason why he was in a position to 
take authorial responsibility for the representation of the relevant results. 

Crucially, radical collaborations yield an epistemic problem rather than an 
engineering problem. In the cases that we have discussed, many different people 
are engaged in substantive epistemic labor; they are called upon to use their 
judgment and to establish their methodology, often in response to real-time 
messy pressures. This is the main reason why there cannot be someone who 
ensures the reliability of every decision and who collects and coordinates the 
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information. No one has the relevant expertise to ensure that the epistemic 
practices and methodological standards used by everyone in the study are 
reliable. And lack of confidence in reliability isn’t the only problem; since they are 
required to exercise judgment and expertise, the members of a radical 
collaboration cannot be treated as mere information processors. Their 
methodological choices and judgments contribute to the overall justificatory story 
in a way that is lost in simple attempts at collating results. Hence, no matter how 
much we work on centralizing and coordinating collaborative research projects, 
and no matter how much we improve transparency and information flow, there is 
no one who is in a position to play that authorial role of someone like De Prony.  

This last point raises a more general and deeper problem: we cannot assume 
that different disciplines each have fixed methodologies and set epistemic 
standards. There are reasonable professional disagreements over how to 
proceed, but in any given situation, methods and standards of justification 
depend on the goals of the inquirers and the local pressures they face. If there 
were universally established, fixed methods standards for each type of research, 
we could set up something similar to the central control model; we would just 
need to create structural mechanisms that would guarantee that researchers 
would properly adhere to these methods and standards, along with reliable 
methods of information flow and coordination. In this case, the researchers could, 
in effect, function as discipline-specific machines whose results could be 
interfaced in a modular fashion. But it is precisely because this is not the case 
that we need researchers who have specialized epistemic skills and judgment; 
this is the reason why no central coordinator can establish in advance what 
everyone’s proper standards should be. We mentioned that these sorts of 
problem arise in climate science above, but to make the generality of this issue 
clear, it will help to consider two additional examples.  

First, it is standard for the principal investigators on a clinical trial to employ a 
dedicated statistician. Often, in an industry-funded trial, the statistician will be an 
industry employee. The lead ‘authors’ may or may not be in a position to check 
over the work of the statistician, looking for glaring errors. But the whole reason 
why research projects bring on a statistician, rather than using some sort of 
statistics software, is that there are substantive, nontrivial choices to be made 
among different kinds of statistical analyses. Running the statistics on a study is 
not merely a mechanical procedure, but rather requires subtle sensitivities to the 
project and pressures at hand. The PIs don’t have the skills to make these subtle 
judgment calls, or they would just do the analysis themselves. But when research 
is radically collaborative, there is no clear way to guarantee that the goals that 
shape even a totally competent statistician’s choice of methods and standards 
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coordinate with the goals of other researchers. This is especially clear (but not 
only so) in the case of industry-employed statisticians working on privately 
funded studies, who have a clear motive to choose a method of analysis that is 
favorable from a marketing perspective. ‘Authors’ often have no mechanisms for 
ensuring that the goals of the statistician, and her understanding of the questions 
and pressures at stake in the research, coordinate with those of other 
researchers.  

A different kind of example comes from local pressures that are opaque to 
spatially distributed collaborators. Consider an investigator who is on the ground 
collecting data on vaginal macrobicide and HIV transmission in a remote African 
village. It is likely that she will need to make many judgment calls as to whether a 
given subject was compliant enough with the protocol or giving reliable enough 
reports to be included in the study. But this is tricky business where there are 
cultural barriers, populations with low scientific literacy, and cultural forces and 
power relations that impede free and informed talk about sexual behavior. There 
is no single right answer that can be mechanically generated as to when a 
subject’s data should be included or not; this is a judgment call. Furthermore it is 
a judgment call that will be shaped by a variety of unpredictable factors, such as 
how hard it is to retain subjects in the study, how dire the communication 
difficulties are, the time frame for the funding, and so forth. The PIs back in North 
America will never be in a position to dictate these standards in advance, or to 
know which standards were used in each case. Crucially, ensuring honesty, 
competence, and the free flow of information will not solve this problem.  

In sum, since different researchers are working in different locations, using 
different disciplinary expertise, are driven by different working understandings of 
the goals of the research and subject to different local pressures resulting in 
varying standards, there seems to be no built-in guarantee that the justificatory 
stories that undergird the various pieces of the study together form one coherent 
justification, for which the group as a whole can be accountable. If the 
represented results are challenged, there may be no single justificatory story to 
be told about the methodological choices made and the epistemic standards 
used - not even one that would need to be told piecemeal by the various 
participants. Thus it seems like there is no reason to believe that the group 
collectively can be accountable for the finished product. Hence there seems to be 
little reason to count them as forming a group author. 

Before moving on we will briefly consider a different way of bringing radically 
collaborative research under the ‘centralized control’ model. We develop this 
alternative and argue against it in much more detail in a different paper 
(Winsberg, Huebner, & Kukla 2014). Perhaps the central controller need not 
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control each part of the research process and methodology, but instead the flow 
of information itself. That is, she might implement a social model that is designed 
to guarantee that the input from different researchers, operating according to 
different standards and in light of different pressures and interests, coheres into a 
reliable whole because of how it is combined. The reliability of the results would 
be defended not in terms of the specifics of the methodology of each part, but in 
terms of the reliability of the system for combining them – in something like the 
way that we can count on the ‘wisdom of crowds’ even (and indeed particularly) 
when we have no reason to count on the wisdom individual crowd members. 

We cannot address this suggestion in detail here, but notice two things. First, 
as things currently stand, radically collaborative sciences like climate science and 
biomedicine have nothing resembling such a social model. They have not even 
acknowledged that there is an epistemic issue concerning how the different parts 
of such research projects combine. Second, whoever was in control of such a 
project would have to have an explicit commitment to her social model and a 
justification of its reliability. If we are interested in accountable authorship then it 
is not enough for us, from the outside, to decide that a result is reliable despite its 
inner chaos, perhaps for ‘wisdom of crowds’ sorts of reasons. Rather, the central 
controller would count as epistemically accountable only insofar as she was 
committed to the reliability of such a social model and ready to defend it or give it 
up as needed. In any case, if we think of authors as primarily authoring a system 
for coordinating parts whose individual reliability cannot be defended, then we 
are radically changing our conception of scientific authorship. 
 
4. How deep is the ‘no shared epistemic standards’ problem?  
 
In the preceding section, we talked about the problem of there being no shared 
epistemic standards that can be used to (more or less mechanically) assess the 
methodological choices of various collaborators. Broadly speaking, there are 
three things we could mean by “shared epistemic standards.” 

First, we might be making the familiar claim that there is no logic of induction. 
It is now virtually a truism in philosophy of science that there exists no single 
articulable set of rules that can deliver, mechanically, probabilities for a 
hypothesis given a specification of the evidence available in favor of (and 
against) it. This is a sense in which there are “no shared epistemic standards”: if 
there rules for the epistemology of science, they are “one off.” There might be, in 
other words, rules of thumb that can sanction empirical inferences in particular 
restricted domains, but these rules are brittle, and they do not travel well. They 
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also, it is often argued, involve tacit knowledge that involves years of training to 
acquire.  

This kind of lack of shared standards poses obvious difficulties for the sorts of 
strategies discussed in the last section, but they are not obviously 
insurmountable. Even if epistemic standards are fragmented and difficult to 
communicate, it might, in principle be possible for some centralized authority to 
master them. So the argument against easy answers to the author problem from 
this kind of failure of shared standards exists, but is relatively weak. 

A second way of fleshing out the claim that there exist no shared epistemic 
standards would be to maintain that even given a particular epistemic task, a 
hypothesis, a body of background knowledge, and a body of evidence, there 
exists no uniquely correct answer concerning whether the evidence sufficiently 
supports the hypothesis. This version of the “no shared standards claim” is full-
blown epistemic relativism. We reject this, or at the very least, we recognize that 
such relativism is incompatible with our notion of authorship, which centrally 
involves the concept of epistemic accountability. Genuine accountability involves 
being able to call the accountable person onto the mat and ask whether or not 
the relevant standards have been met; the very ideas of accountability and 
authorship makes no sense if there are literally no common standards at all. I 
cannot be held accountable for my choice of ice cream flavor. 

But there is a third notion of “shared epistemic standards” that we think does 
fail to obtain, and whose failure poses a more serious and specific problem for 
radically collaborative research than the mere absence of a logic of induction. 
Note that even if there were a logic of induction, no scientific hypothesis would 
ever be established with certainty on the basis of a finite amount of evidence. 
The judgment whether a hypothesis should be accepted in light of the evidence 
involves two kinds of trade-offs. First, let us call the capacity of an investigation to 
generate persuasive results given a certain of effort and resources (and hence to 
collect a certain about of data), the “power” of the investigation. Methodological 
choices involve a trade-off between the power and the reliability of the 
investigation. Second, even given a choice along that continuum, methodological 
choices involve a further trade off between a desire to avoid false positive 
conclusion and a desire to avoid false negative conclusions – a so-called balance 
of inductive risks (Churchman 1948; Rudner 1953, Douglas 2000, 2004, 2009; 
Wilholt 2009) Decisions about how sure we need to be to accept a hypothesis 
always depend on the seriousness of making a mistake. Thus there cannot be 
any general or objectively correct answer to how such a trade-offs should be 
balanced. Values and interests inevitably play an important role in determining 
the ‘seriousness’ of accepting false positives and rejecting false negatives: to use 
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Richard Rudner’s classic example, our concern with false negatives will be much 
higher if we are studying whether a drug has a potentially lethal side effect than if 
we are testing for defects in a set of belt buckles (Rudner 1953).  

Since scientific inference is always uncertain, there is no avoiding making a 
judgment about how to balance inductive risks, and particular interests and 
investments will often affect this judgment: a drug company may well set a lower 
standard for ‘establishing’ efficacy than a consumer group. Furthermore, Douglas 
(2000, 2009) and others have argued, such interest-dependent judgments occur 
throughout the research process. How data are classified and coded, which sorts 
of screening tests are used, which methods are employed in smoothing and 
correcting data, and indefinitely many other judgments involve this type of 
inductive risk balancing. For example, whether researchers classify slides of rat 
tumors as benign or malignant turns out to depend, to a very large degree, on the 
goal of the study and their stake in the outcome (Douglas 2004). 

In such situations, there is no value-free notion of a correct choice of 
distribution of inductive risks, since any choice will involve trade-offs. Likewise 
there is no value-free notion of “the correct epistemic standard,” even in the “one-
off” sense discussed above.11 But remember where this leaves us: not only do 
different researchers in a radically collaborative research project use different 
methodological standards and make different choices, and not only do we need 
them to be able to exercise their judgment in this way, but there is no right 
answer as to how they should make these choices – no universalizable set of 
principles by which their performance can be measured. Each researcher faces 
micro- and macro-pressures that yields a local, one-off set of interests and 
values, and these will inevitably shape her choices all through the research 
process. Not only can we not typically recover these interests and choices (which, 
as we have pointed out, are likely often opaque to the researchers themselves) 
but even if we could, we would have no stable meta-standard for measuring their 
scientific reliability. Indeed, the relevant notion of reliability is at the center of 
what requires individual, value-laden judgment. 

What sorts of interests and values might make a relevant difference to 
methodological choices, including inductive risk balancing, in the context of 
radically collaborative research? Climate science and biomedicine are 
normatively rich sciences that are driven by social values and demands in 
obvious ways. We have direct practical interests in the results of these sciences 
– interests that are personal, ethical, political, and economic. Different 
stakeholders obviously care in various ways whether a climate model gives 
																																																								

11 This is not the same thing as full-blown epistemic relativism, since we can each still offer reasons 
for having chosen one methodological option over another. 
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encouraging or alarming results, whether a drug is more effective than the 
current standard of care, and so forth. A great deal of attention has been devoted 
to exploring how profit motives shape industry-funded clinical drug trials, and it 
may be possible to address the systematic structuring of studies by clear, 
recoverable interests (cf., Healy & Cattell 2003, Elliott 2011a, 2011b; Kahn 2004, 
2006; Sankar & Kahn 2005; Sismondo 2007, 2008, 2009). But what matters 
more for our purposes is the micro-interests and micro-values that shape 
individual researchers’ local practices, rather than the large-scale social 
investments that shape the research project as a whole and might be relatively 
easier to uncover and critically assess.  

When bioethicists and philosophers of science have worried about the role of 
values and interests in shaping methodological choice points in biomedical 
research, they have focused overwhelmingly on financial interests. Indeed, 
concerns over the influence of financial pressures are justified. Private industry 
plays a huge and ever-increasing role in funding biomedical research. Scandals 
over ghostwriting, selective data use, selective publication, and ad hoc study 
designs are common, and often focus on the role of pharmaceutical companies 
and for—profit companies in controlling both the methods and the message of 
the science they fund. These scandals typically reveal a top-down, organized 
attempt to shape publications in ways that will increase the profits of a specific 
stakeholder. But published studies in biomedical science typically disclose 
dozens or even hundreds of conflicting financial interests. Collaborators often 
receive funding and support in the form of shares, grants, and lecturing fees, 
among many others. Collaborators from one part of a study are unlikely to know 
all of the micropressures that other participants are under to secure grants, 
satisfy donors, or wrap up a study.  

Furthermore, financial interests are only one kind of pressure that shapes the 
methodological decisions and standards that are at play in biomedical research. 
At any given site, postdocs might be under pressure to please their advisers, 
there might be scientists who are attached to pet hypotheses or concerned to 
build their reputations, faculty might be under pressure to flesh out their annual 
reports or make tenure, and there may be disciplinary turf wars and grand 
ideological battles that guide the research. This is compounded by professional 
competitions and investments, along with pressures from local universities and 
communities. The course of the research is shaped by a wide variety of micro-
interests, even where everyone behaves honestly and nothing is hidden. These 
interests are not typically coordinated with one another; often they may not be 
consciously available even to those that have them. 



 20 

One source of such micro-interests – which bioethicists have discussed at 
length – derives from the fact that most collaborators in clinical research are 
healthcare professionals, so they come into the research project inhabiting dual 
roles with potentially conflicting duties. They are professional caregivers and 
healers, as well as scientists. But notice that these dual roles can create 
pressures that can affect inductive risk balancing and other methodological 
choices. For example, when faced with a subject who has a medical need, it is 
not obvious that the duty to stick closely to a scientific protocol will trump the duty 
to care for a person. In fact, Charles Lidz and his colleagues (2009) report that 
64% of clinical researchers thought that researchers should depart from protocol 
to improve medical care, and many of them reported giving restricted medication 
to subjects, recruiting subjects they knew to be ineligible for a trial, and keeping 
subjects in a trial after they met the termination criteria in order to improve their 
health. As they note, such deviations may significantly affect the results of clinical 
trials.  
 
5. Structured radical collaboration in high-energy physics 
 
Up to here, we have focused on radically collaborative research in climate 
science and biomedicine. These are sciences in which it is not surprising that 
values and interests play a substantive role, given the socially pressing, 
normatively complex nature of their missions. Perhaps, then, our worries are not 
really about authorship in radical collaboration per se, but rather concern value-
rich science. In this section we consider a ‘pure’ science that still operates 
through radical collaboration by necessity. Research in high-energy physics 
(hereafter HEP) must be distributed across numerous laboratories (which are 
often located in different locations throughout the world). In the case of the 
Organisation Européenne pour la Recherche Nucléaire (CERN), publications 
reporting collaborations on a single experiment may include as many as 1000 
‘authors’, listed in alphabetical order without regard to seniority.12 Like climate 
modeling and biomedical research, research in HEP relies on technological and 
symbolic resources that are rarely shared among different labs. The size and 
complexity of the detectors, the excessively long duration of the experiments 

																																																								
12 The Stanford Linear Detector (SLD) worked to maintain “the coherence of the group and the de 

facto recognition that contributions to a piece of physics are made by all collaborators in different 
ways” (Galison 2003, 332). Each physicist was listed as a coauthor, and that the first publication on 
a particular topic included engineers as well. Authorship was not limited to those who 'contributed' 
to the reported result, but included everyone who had worked with a research group for a year (cf., 
Galison 2003, 334-335). 
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(some lasting as long 20 years), as well as the degree of collaboration required 
to produce a result, make isolated authorship impossible. But HEP is not clouded 
by policy entanglements, and indeed it seems to have little if any foreseeable 
practical import. Thus HEP is a good candidate for a science that may be 
radically collaborative without raising worries about the structuring role of multiple 
interests.  

But consider an anecdote that was relayed to us. There were two major 
groups looking for the Higgs particle at CERN: ATLAS and CMS. When ATLAS 
reported data consistent with the observation of the Higgs particle at 2.8 sigma, 
the buzz around CMS was that they needed to do whatever was necessary to 
“boost their signal.” This meant shifting their distribution of inductive risks to 
prevent them from falling too far behind the ATLAS group—toward higher power, 
at the expense of reliability, or towards a lower probability of missing a Higgs-
type event, at the expense of a higher probability of finding a false positive. 
Hence even here, it seems that we see the influence of local pressures and 
interests on methodology, in ways that cannot be simply eliminated. 

It may seem that such standards could be chosen collectively, or managed 
centrally, in ways that preserve the methodological transparency that is 
necessary for collective authorship.  But a little bit of background should 
disabuse us of such a fantasy. The LHC detectors generate huge amounts of raw 
data: approximately 23 petabytes/second of raw data. 13  Hence, a triggering 
mechanism must be used to decide which data to keep, and which to ignore. 
Strikingly, this triggering process involves human judgment. When collisions 
occur, one cannot simply see a Higgs particle. At best, one sees the spray of 
particles that a Higgs event would produce if it occurred. But we are unable to 
calculate from first principles what this spray will look like, because we don’t have 
a good enough theory of the strong interaction. So the calculation has to be 
semi-empirical, and some of the relevant empirical facts have to be observed on 
the fly. Very time-sensitive judgments have to be made, and they have to be 
made by widely distributed agents. And of course, every judgment involves a 
distribution of inductive risks. Thus it is hard to know how a perception that “we 
are falling behind the ATLAS group in the race” will affect the judgments on the 
ground. 

This is something that people at CERN implicitly understand. They attempt to 
manage the role that interests might play in shaping perception by, for instance, 
using blinding procedures: The people making the empirical judgments about 
whether a Higgs event has occurred cannot see the part of the background 

																																																								
13 Approximately 25 megabytes per event, times 23 events per beam crossing, times 40 million beam 

crossings per second in the center of the detector. 
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information that is relevant to the calculation of whether a “trigger” will be 
reached when they make their judgment. This separates the roles of those who 
decide how much to boost the signal from those who evaluate the resulting 
patterns; in other words, this structural mechanism is designed to minimize any 
distortion issuing from the interests of the scientists. Whether of not this 
technique helps to address this particular problem, it indicates a way in which 
inductive risk balancing continues to occur in unpredictable and perhaps 
unrecoverable ways throughout the research process, even where the research 
does not aim at some obviously value-laden goal.  

Nonetheless, we think there are two relevant differences between HEP and 
our other two cases that make us worry less about the reliability of the results of 
HEP. 1) In HEP, the distribution of inductive risks is linear, in the sense that the 
Higgs Boson either exists or it does not. Compare to the climate case, where 
there are a wide variety of desirable prediction successes: global mean surface 
temperature, precipitation, sea level, ice melt, drought, storms, and other regional 
effect, etc. These are inductive risk considerations that pull in many directions; 
researchers can have any of a wide, multidimensional array of investments in 
various outcomes and parameters at both the micro and the macro level. In HEP, 
there is only one dimension of pull: you are either erring on the side of false 
positives or false negatives, when it comes to finding the Higgs Boson. This 
would seem to make the problem of ‘conflicting standards’ much more 
manageable, at least in principle. 2) Relatedly, in HEP, while there is a 
distribution of inductive risks at any given moment in time, in the long run, there 
will not be one. As more and more data are collected by the LHC, the power of 
the experiment gets larger and larger, and the balance of DIR gets smaller and 
smaller, until eventually, the choices will not matter. Likewise, the phenomena in 
HEP do not themselves change, so any attempts to understand them are, at 
least in principle, both cumulative and reproducible. In contrast, in climate 
science and biomedical research, the central questions are fundamentally time 
sensitive, both because the research questions are inherently local and the 
phenomena under scrutiny themselves dynamic. Of course, by 2100, we will 
know with certainty what the 2100 climate looks like. And in 2100, we will almost 
certainly retroactively know how effective some particular drug was, in some 
population. But our biomedical research practices are, of necessity, set up to give 
us answers now. HEP is set up to give us good results as soon as possible, but 
the data will continue to trickle in until we are, for all intents and purposes, sure of 
their implications. 

While (at least in the long run) we may be less concerned about the reliability 
of HEP than of climate science or biomedicine, we have not found great reason 
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to be comforted about the prospects for traditional authorship in this domain. Of 
necessity, a widely distributed, massive group of highly specialized researchers 
must participate in these projects. These researchers are not in a position to 
either understand all their colleagues’ contributions or to track and vouch for their 
local choices and judgments, and it still seems unlikely that this problem will be 
eliminated by trying to make the science more mechanistic or transparent.14 That 
we can be more confident that HEP will converge on reliable conclusions 
eventually is politically comforting, perhaps, but it does not help give us a model 
of authorship in radically collaborative research that should comfort the social 
epistemologist. 
 
6. Conclusion 
 
We have argued that there are—at present—no plausible strategies for 
understanding or ensuring accountable authorship in the context of radical 
collaborative research. We’ve tried to show that there is no one who is in a 
position to know, understand, or explain all of the epistemically significant 
decisions that have been made in the production of a purported piece of scientific 
knowledge. In radical collaborations, catch-and toss authorship cannot be 
sustained because the individuals who are involved in a research project cannot 
recover all of the epistemically significant decisions that have been made along 
the way; similarly, the necessity of local judgments that are made on the fly 
precludes the possibility of top-down, centralized control over knowledge 
production. Finally, as we suggested in the last section, the necessity of value-
driven risk balancing decisions – which show up even in a ‘pure’ science like 
HEP – make genuine group authorship difficult to sustain. Together, these 
arguments suggest that neither individual nor multiple nor group authorship is 
plausible in radically collaborative research, at least in anything like its current 
organizational form. As things stand, authorship simpliciter remains impossible in 
most radical collaborations.  

We have focused on the ways in which these issues arise in climate science 
and biomedical research. This is because the data that are collected and 
reported in these sciences are epistemically, morally, and politically important. 
Scientists working in these areas confront issues that are both socially pressing 
and normatively loaded, and it matters deeply that the data they reported are 
accurate and that there is someone or some people who can take responsibility 

																																																								
14 Indeed, high-energy physicists have been exceptionally interested in authorship questions, and 

have developed various techniques for regulating and streamlining the authorship process; see 
footnote 11. But these have not been targeted at the kinds of concerns we have focused on here. 
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for this accuracy. This is not merely because we want to get the facts right, but 
because we often need to decide—right now—whether to remove a particular 
drug from the shelves, or whether to implement a policy that can sustain public 
health in the face of global climate change. The ability to interpret the results 
reported in radically collaborative publications, and to decide when and how to 
trust these results, matters not just epistemologically but also morally and 
politically. 

Until now, radically collaborative science as such has not been identified as a 
distinctive phenomenon with its own epistemological and ethical challenges and 
complications. But such collaborations dominate many of the most socially 
pressing areas of science. This form of science is increasingly well represented 
in top journals and it is receiving more and more funding. We contend that the 
existing models of collective authorship and collaboration are unequipped to deal 
with the complexities that arise when epistemically robust values and judgments 
must be made at many disparate points in the production of radically 
collaborative data.  

We also maintain that the models of collaboration and authorship that are 
applicable to small groups, where everyone can understand the judgments and 
decisions that are made by others, cannot simply be scaled up to address the 
issues that we have addressed. Importantly, this is not because we don’t yet 
know how to scale then up. It is because scaling up is not the right way to 
address the issues we have raised here. These form novel class of epistemic 
and ethical challenges that arise specifically in sciences of scale. They are not, 
even in principle, the kinds of issues that we could scale up simpler models to 
address; they originate in the messiness that is produced by massively complex, 
distributed research architectures. Social epistemologists need to think creatively 
about authorship and accountability in the context of radically collaborative 
research, in which the production of a scientific result requires multiple, disparate 
kinds of experts, widely spread out across various locations, working under time- 
and context-specific conditions. 
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